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Abstract. The branching rule given by Fronsdal for the restriction from G2 to SU(3) is 
used to obtain the multiplicities of the dominant weights of representations of G1 by 
means of a recurrence relation having a simple geometric interpretation. The branching 
multiplicities and weight multiplicities are tabulated for the representations f w l  ~ 2 3  of G2 

w i t h O s w 1 + w ~ C 9 .  

1. Introduction 

The branching rule for the restriction from G2 to SU(3) was first derived by Fronsdal 
(1962) and subsequently re-derived using different methods by Sharp and Lam 
(1969), Sviridov er a1 (1973) and Perroud (1976). The result is remarkably simple but 
has not previously been exploited in order to calculate the weight multiplicities of G2. 
Instead a variety of other methods of calculating these multiplicities have been 
developed by Antoine and Speiser (1964), Radhakrishnan and Santhanam (1967), 
Gruber and Weber (1968), McConnell (1968), Springer (1968), and Gruber (1970). 
These methods are all rather complicated and the only tabulation of results is that of 
Springer. In this paper explicit expressions introduced elsewhere (King and Qubanchi 
1978) for the characters of irreducible representations of G2 and SU(3) are used to 
outline Fronsdal’s derivation of the branching rule appropriate to the restriction from 
GZ to SU(3). This is done with a view to simplifying the calculation of weight 
multiplicities of G2 by exploiting the well known results for the weight multiplicities of 
SU(3) due originally to Wigner (1937). A very simple recurrence relation is obtained 
and a number of results tabulated. 

2. Characters of SU(3) 

The irreducible representation {zq v2) of SU(3) has character: 

with the class parameters constrained by the condition 

x1x2x3 = 1. (2.2) 

The permutation 7~ of S3 denotes the map from (1 2 3) to (T, 7~~ r3), and (-1)7 
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denotes the parity of 7 ~ .  This character may be rewritten in the form: 

where the coefficient z’n3) is the multiplicity of the weight ( n l  n2 n3 )  in the 
representation {vl v2}. The corresponding weight diagram is the poitit set in which 
each point specified by the triangular coordinates (a n2 n3)  is assigned the multiplicity 

(2.4) KiK; :In3) = 1 + min(vl - v2, v2, v1 - n l ,  v1 - n2, v1 - n3,  n l ,  n2,  n3)  
where 

minimum of K ~ ,  ~ 2 ,  . , 
-1 

min(Kl, K2, . . .> = { if K ,  2 0 for all i, 
if ~i < 0 for any i. 

The use of triangular coordinates in a plane is dictated by the constraint (2.2) and 
implies the coincidence of points labelled by (nl  n2 n3)  and (n  1 + no, n 1 + no, n3 + no)  
for any no. The weight diagrams have the well known hexagonal structure pointed out 
by Wigner (1937). 

Both the numerator and the denominator of the expression (2.1) for the character 
of the SU(3) representation {VI v2} may also define point sets. The quotient of these 
point sets is thus the weight diagram of {vl  v2}. 

3. The branching rule for Gz SU(3) 

The formula analogous to (2.1) for the character of the irreducible representation 
€PI  c c 2 1  of G2 is: 

Once again the class parameters are constrained by the condition (2.2). Furthermore 
this parametrisation is such that the branching rule appropriate to the restriction of 
group elements from G2 to SU(3) may be obtained merely by writing the character 
(3.1) as a linear combination of the characters (2.1): 

The branching multiplicity diagram may conveniently be constructed as a point set in 
which each point specified by the oblique coordinates (vl  v2)  is assigned the branching 
multiplicity C,,I y 2 )  

f11.111.21 

Making use of (2.2) in (3.1) it is clear that 

Comparison with (2.1) yields the formula: 

(3.4) 
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In order to evaluate this quotient it is merely necessary to notice that the denominator 
is 

xl+x2+x3-x;1 - x i 1  -x;l, 

where use has been made of (2.2), whilst the numerator is: 

by virtue of the validity of the modification rules: 

(3.5) 
{ U , -  Y z -  1 ,- v * - 2 )  

- X { u 2 - 1 , u 1 + 1 )  = -x SU(3): x { y l  4 = 

which follow immediately from the character formula (2.1) and which impiy that the 
last four terms all vanish. It is then straightforward to see that the point sets defined 
by the numerator and denominator of (3.3) are isomorphic to those defined by the 
numerator and denominator of (2.1). It follows that the quotient point set for (3.4) is 
isomorphic to the weight diagram of the representation {PI p2) of SU(3) in the space 
of irreducible representations of SU(3) with points specified by oblique coordinates 
(v l  v2) .  More precisely 

(3.6) f @ l 4  = &Ll w 2 )  Cbl v 2 )  ( ~ l - u z . ~ 2 . w I + F z - ~ l ) ~  

so that the branching multiplicities for Gz restricted to SU(3) are seen to be nothing 
other than weight multiplicities of SU(3). This result was pointed out by Fronsdal 
(1962), who remarked on the ‘strange’ nature of this relationship between G2 and 
SU(3). 

An illustrative example is given in figure 1 for the case {pl p2]  = 1.5 21 and the 
results appropriate to the representations f p l  p2]  with 0 s p1  + p 2  s 9 are given in 
table 1. 

I 
/ 

, 1 1 1  

, 1 2 3 2 1  

/ 1 ’ 2  2 1 
/ 

Figure 1. The branching multiplicity diagram for GZJSU(3) for the representation 
fp l  p z ) = f S  21 of G2 into irreducible representations { u l  v z }  of SU(3). The numbers in 
the array are the multiplicities Cfs:;2). 

4. The weight multiplicities of Gz 

The multiplicity A4fL;z?3) of the weight (nl  n2 n3) in the representation fp l  p2] of G2 
is defined by the expansion: 

(4.1) 
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Combining (3.2),  ( 3 . 6 )  and ( 2 . 3 )  yields the formula: 

The Weyl symmetry manifested by the character formula ( 3 . 1 )  leads to a symmetry of 
the corresponding weight diagram whereby each weight vector (n l  n2 n3) is related by 
the Weyl group to a dominant weight for which nl - n2 = m l  3 n2 - n3 = m2 2 0. The 
multiplicity of such a dominant weight is more conveniently denoted by: 

where m l  2 m2 2 0 and 3mo+ m l  - m2 = u1+ u2, with mo 2 m2. 

The first factor, as has been explained in 0 3,  defines the hexagonal point set 
associated with the representation {p l  pz}  of SU(3)  in which the points are labelled by 
oblique coordinates ( u l  u2). The contribution to e dominant weight (ml  m2) of the 
representation {vl u2} of SU(3)  is then found from the second factor. 

This contribution may be evaluated by noting that for the dominant weights 
m l  + mo 3 mo 3 mo - m2 so that by virtue of (2 .4 )  

( U l  u2} 
K ( m l + m 2 , m o m 0 - m 2 )  = 1 +min(ul - 1/75 ~ 2 ,  vi - m l  - mo, mo- m2), ( 4 . 4 )  

where the four arguments of min(. . .) are the distances of the point ( u l  u 2 )  from the 
four lines 

U1 - U 2  = 0, U 2  = 0 ,  2 u 1 - u 2 = 2 m l + m 2  and u l + u 2 = m l + 2 m 2 .  

The corresponding point set is bounded by these four lines with multiplicity 1 at points 
on this boundary and increasing indefinitely in steps of 1 along lines parallel to 
u1 = 2v2 .  This is illustrated for the case (ml  m2)= (2 1 )  in figure 2 .  

Figure 2. The point set defined by K ) ~ l ? ~ o , m o . m o - m z )  for the case (ml mz)= (2 1) with 
3mo+ 1 = V I  + VZ. 

The multiplicity MtK; 22) is then found by superposing the point sets appropriate 
to the two factors of (4 .3)  and summing the pairwise products of the contributions 
from each point. This yields, as shown in figure 3 for the case of the representation 
fpl p23 = €5  23 and the dominant weight (ml  m 2 )  = (2  l ) ,  the multiplicity: 

MfS 23 - 
(2 1) - 1 . 1  + 1.2 + 2.1 + 3.2 + 1.3 + 2.1 + 2.2 + 1 . 1  = 2 1 
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Figure 3. The evaluation of M;;;?:) in the case {pl p2]=fS 21 and ( m ,  m 2 ) =  (2 1)  by 
the superposition of the weight diagram of {S 2} on the point set KIS:ZA,mo,mo-l The 
result is the sum of the non-vanishing products which are encircled, so that Mt;$= 21. 

This same procedure may be followed for each point in turn or  it may be noted from 
the structure of the point sets that: 

where 

with the summation carried out over all points ( v l  v2) for which 

(ml+m2+a+2y ,  m z + 2 a + y )  for 0 s a s m l  

( m l + m ~ + P + 2 y , m 2 - @ + y )  for O S @  s m z  
( V I  v2)= 

with y = 0, 1, 2 , .  . . , 
Diagramatically this recurrence relation has a simple interpretation whereby the 

contribution to Rf;; is just the point set defined by the intersection of the weight 
diagram of { p l  p2) with the lines parallel to v1  = 2v2 through the points on  that part of 
the boundary of the point set defined by the second factor of (4.3) specified by 
2v1 - v2 = 2ml + m2 and v1 + v2 = ml+ 2m2. No multiplication is required. This is 
exemplified in figure 4 in the case f p l  p2]  = € 5  21 and (ml  m 2 ) =  ( 2  1) and in figure 5 in 
the case fc(l p2]=f5 23 and (ml  m2)= (1 0). 

Since Mr3'2:) = 8 it follows from these diagrams that Mf::: = M:;:: + 13 = 21 in 
agreement with the previous calculation, and Mf::! = Mf: :! + 11 = 32. 

Clearly the application of the recurrence relation (4.5) commencing with points 
( m l  m2) at the outer edge of the weight diagram enables the multiplicities of all 

Figure 4. The evaluation of RjE;?:] in the case {pl /*2] = € 5  23 and ( m l  m 2 ) =  (2 1) 
through the intersection of the weight diagram of ( 5  2} and the relevant points of the set 
K'"1 (2+mo,mo,mo-l~.  "2) The result is the sum of the encircled numbers, so that R:: :: = 13. 
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, 
/ 

/ 
,1 1 1 \y 2 6  

2 3 0 2 1  
I /I/ 1 o/; 

-1-1-1- 

Figure 5. The evaluation of R : ~ ~ ~ ~ ~  in the case ff i l  p2f = €5  2) and (ml m2) = (1 0) 
through the intersection of the weight diagram of {S 2) and the relevant points of the set 
K ~ ~ ; ~ ~ , m o , m o ) .  The result is the sum of the encircled numbers, so that Rf:$ = 11. 

dominant weights to be evaluated. The results appropriate to the representation 
fpl p2] = €5  23 are displayed in figure 6. 

,,15, 8 3 ? 

,29‘ 21 13 7 2 

ml 

Figure 6. The multiplicities Mf::f,,) of the dominant weights (ml m2) of the represen- 
tation € 5  2) of Gz. 

Finally the complete weight diagram may be constructed through the Weyl sym- 
metry operations. For the simpler representation fpl p2]  = €3 13 this is shown in 
figure 7 .  

1 

2 
1 

1 

weights  

1 i 3 3 2 1  

L1 
Figure 7. The weight multiplicity diagram for the representation fp l  p 2 )  = €3 13 of G2.  
The numbers displayed are the multiplicities Mf:;i2 ,,)). 

The twelve-fold symmetry is evident whereby the complete diagram may be 
generated from the dominant weight multiplicities. The results for the multiplicities of 
the dominant weights of the representations fpl p2)  of G2 with 0 S p1  + p2 s 9 are 
given in table 2, extending the tabulation of Springer (1968). 
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5. Conclusion 

It should be stressed that the important aspect of the development presented here is 
the use of point set diagrams to describe both weight multiplicities and branching 
multiplicities. This together with the especially simple rules for evaluating the weight 
multiplicities of SU(3) lead very easily to the derivation of the crucial recurrence 
relation (4.5) for dominant weight multiplicities. The simple form of this relation 
obviates the need to cope with the more complex calculations referred to in the 
introduction. 
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