The evaluation of weight multiplicities of G_{2}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 111491
(http://iopscience.iop.org/0305-4470/11/8/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:57

Please note that terms and conditions apply.

The evaluation of weight multiplicities of $\boldsymbol{G}_{\mathbf{2}}$

R C King and A H A Qubanchi
Mathematics Department, The University, Southampton, SO9 5NH, UK

Received 11 January 1978

Abstract

The branching rule given by Fronsdal for the restriction from G_{2} to $\mathrm{SU}(3)$ is used to obtain the multiplicities of the dominant weights of representations of G_{2} by means of a recurrence relation having a simple geometric interpretation. The branching multiplicities and weight multiplicities are tabulated for the representations $\left\{\mu_{1} \mu_{2}\right\}$ of G_{2} with $0 \leqslant \mu_{1}+\mu_{2} \leqslant 9$.

1. Introduction

The branching rule for the restriction from G_{2} to $\mathrm{SU}(3)$ was first derived by Fronsdal (1962) and subsequently re-derived using different methods by Sharp and Lam (1969), Sviridov et al (1973) and Perroud (1976). The result is remarkably simple but has not previously been exploited in order to calculate the weight multiplicities of G_{2}. Instead a variety of other methods of calculating these multiplicities have been developed by Antoine and Speiser (1964), Radhakrishnan and Santhanam (1967), Gruber and Weber (1968), McConnell (1968), Springer (1968), and Gruber (1970). These methods are all rather complicated and the only tabulation of results is that of Springer. In this paper explicit expressions introduced elsewhere (King and Qubanchi 1978) for the characters of irreducible representations of G_{2} and $S U(3)$ are used to outline Fronsdal's derivation of the branching rule appropriate to the restriction from G_{2} to $\mathrm{SU}(3)$. This is done with a view to simplifying the calculation of weight multiplicities of G_{2} by exploiting the well known results for the weight multiplicities of SU(3) due originally to Wigner (1937). A very simple recurrence relation is obtained and a number of results tabulated.

2. Characters of $\mathbf{S U}(3)$

The irreducible representation $\left\{\nu_{1} \nu_{2}\right\}$ of $\mathrm{SU}(3)$ has character:
$\operatorname{SU}(3): \quad \chi^{\left\{\nu_{1} \nu_{2}\right\}}=\frac{\Sigma_{\pi \in S_{3}}(-1)^{\pi} x_{\pi_{1}}^{2+\nu_{1}} x_{\pi_{2}}^{1+\nu_{2}} x_{\pi_{3}}^{0}}{\Sigma_{\pi \in S_{3}}(-1)^{\pi} x_{\pi_{1}}^{2} x_{\pi_{2}}^{1} x_{\pi_{3}}^{0}}$,
with the class parameters constrained by the condition

$$
\begin{equation*}
x_{1} x_{2} x_{3}=1 \tag{2.2}
\end{equation*}
$$

The permutation π of S_{3} denotes the map from (123) to ($\pi_{1} \pi_{2} \pi_{3}$), and (-1$)^{\pi}$
denotes the parity of π. This character may be rewritten in the form:
$\mathrm{SU}(3): \quad x^{\left\{\nu_{1} v_{2}\right\}}=\sum_{n_{1}, n_{2}, n_{3}} K_{\left(n_{1} n_{2} n_{3}\right)}^{\left\{\nu_{1} \nu_{1}\right\}} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}}$
where the coefficient $K_{\left(n_{1} n_{2} n_{3}\right)}^{\left\{\nu_{1} \nu_{2}\right\}}$ is the multiplicity of the weight $\left(n_{1} n_{2} n_{3}\right)$ in the representation $\left\{\nu_{1} \nu_{2}\right\}$. The corresponding weight diagram is the point set in which each point specified by the triangular coordinates ($n_{1} n_{2} n_{3}$) is assigned the multiplicity

$$
\begin{equation*}
K_{\left(n_{1} n_{2} n_{3}\right)}^{\left\{\nu_{1} \nu_{2}\right\}}=1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}, \nu_{1}-n_{1}, \nu_{1}-n_{2}, \nu_{1}-n_{3}, n_{1}, n_{2}, n_{3}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\min \left(\kappa_{1}, \kappa_{2}, \ldots\right)= \begin{cases}\text { minimum of } \kappa_{1}, \kappa_{2}, \ldots & \text { if } \kappa_{i} \geqslant 0 \text { for all } i \\ -1 & \text { if } \kappa_{i}<0 \text { for any } i\end{cases}
$$

The use of triangular coordinates in a plane is dictated by the constraint (2.2) and implies the coincidence of points labelled by $\left(n_{1} n_{2} n_{3}\right)$ and ($n_{1}+n_{0}, n_{1}+n_{0}, n_{3}+n_{0}$) for any n_{0}. The weight diagrams have the well known hexagonal structure pointed out by Wigner (1937).

Both the numerator and the denominator of the expression (2.1) for the character of the $\operatorname{SU}(3)$ representation $\left\{\nu_{1} \nu_{2}\right\}$ may also define point sets. The quotient of these point sets is thus the weight diagram of $\left\{\nu_{1} \nu_{2}\right\}$.

3. The branching rule for $\boldsymbol{G}_{2} \downarrow \mathbf{S U (3)}$

The formula analogous to (2.1) for the character of the irreducible representation $\left\{\mu_{1} \mu_{2}\right\}$ of G_{2} is:
G_{2} :

$$
\begin{equation*}
x^{\left\{\mu_{1} \mu_{2}\right\}}=\frac{\Sigma_{\pi \epsilon S_{3}}(-1)^{\pi}\left(x_{\pi_{1}}^{2+\mu_{i}} x_{\pi_{2}}^{0} x_{\pi_{3}}^{-1-\mu_{2}}+x_{\pi_{1}}^{-2-\mu_{1}} x_{\pi_{2}}^{0} x_{\pi_{3}}^{1+\mu_{2}}\right)}{\Sigma_{\pi \in S_{3}}(-1)^{\pi}\left(x_{\pi_{1}}^{2} x_{\pi_{2}}^{0} x_{\pi_{3}}^{-1}+x_{\pi_{1}}^{-2} x_{\pi_{2}}^{0} x_{\pi_{3}}^{1}\right)} \tag{3.1}
\end{equation*}
$$

Once again the class parameters are constrained by the condition (2.2). Furthermore this parametrisation is such that the branching rule appropriate to the restriction of group elements from G_{2} to $S U(3)$ may be obtained merely by writing the character (3.1) as a linear combination of the characters (2.1):
$G_{2} \downarrow \operatorname{SU}(3): \quad x^{\left\{\mu_{1} \mu_{2}\right\}}=\sum_{\nu_{1} \geqslant \nu_{2} \geqslant 0} C_{\left\{\nu_{1} \nu_{2}\right\}}^{\left\{\mu_{1} \mu_{2}\right\}} x^{\left\{\nu_{1} \nu_{2}\right\}}$.
The branching multiplicity diagram may conveniently be constructed as a point set in which each point specified by the oblique coordinates ($\nu_{1} \nu_{2}$) is assigned the branching multiplicity $C_{\left\{\nu_{1} \nu_{2}\right\}}^{\left\{\mu_{1} \mu_{2}\right\}}$.

Making use of (2.2) in (3.1) it is clear that

$$
G_{2}: \quad \chi^{\left.£ \mu_{1} \mu_{2}\right\}}=\frac{\Sigma_{\pi \in S_{3}}(-1)^{\pi}\left(x_{\pi_{1}}^{3+\mu_{1}+\mu_{2}} x_{\pi_{2}}^{1+\mu_{2}} x_{\pi_{3}}^{0}-x_{\pi_{1}}^{3+\mu_{1}+\mu_{2}} x_{\pi_{2}}^{2+\mu_{1}} x_{\pi_{3}}^{0}\right)}{\Sigma_{\pi \in S_{3}}(-1)^{\pi}\left(x_{\pi_{1}}^{3} x_{\pi_{2}}^{1} x_{\pi_{3}}^{0}-x_{\pi_{1}}^{3} x_{\pi_{2}}^{2} x_{\pi_{3}}^{0}\right)}
$$

Comparison with (2.1) yields the formula:

$$
\begin{equation*}
\chi^{\left\{\mu_{1} \mu_{2}\right\}}=\frac{\chi^{\left\{\mu_{1}+\mu_{2}+1, \mu_{2}\right\}}-\chi^{\left\{\mu_{1}+\mu_{2}+1, \mu_{1}+1\right\}}}{\chi^{\{1,0\}}-\chi^{\{1,1\}}} . \tag{3.4}
\end{equation*}
$$

In order to evaluate this quotient it is merely necessary to notice that the denominator is

$$
x_{1}+x_{2}+x_{3}-x_{1}^{-1}-x_{2}^{-1}-x_{3}^{-1}
$$

where use has been made of (2.2), whilst the numerator is:

$$
\chi^{\left\{\mu_{1}+\mu_{2}+1, \mu_{2}\right\}}-\chi^{\left\{\mu_{1}+\mu_{2}+1, \mu_{1}+1\right\}}+\chi^{\left\{\mu_{1}, \mu_{1}+1\right\}}-\chi^{\left\{\mu_{2}-1, \mu_{2}\right\}}+\chi^{\left\{\mu_{2}-1,-1\right\}}-\chi^{\left\{\mu_{1},-1\right\}}
$$

by virtue of the validity of the modification rules:
$\mathrm{SU}(3): \quad \chi^{\left\{\nu_{1} \nu_{2}\right\}}=-\chi^{\left\{\nu_{2}-1, \nu_{1}+1\right\}}=-\chi^{\left\{\nu_{1}-\nu_{2}-1,-\nu_{2}-2\right\}}$
which follow immediately from the character formula (2.1) and which impiy that the last four terms all vanish. It is then straightforward to see that the point sets defined by the numerator and denominator of (3.4) are isomorphic to those defined by the numerator and denominator of (2.1). It follows that the quotient point set for (3.4) is isomorphic to the weight diagram of the representation $\left\{\mu_{1} \mu_{2}\right\}$ of $\mathrm{SU}(3)$ in the space of irreducible representations of $S U(3)$ with points specified by oblique coordinates ($\nu_{1} \nu_{2}$). More precisely

$$
\begin{equation*}
C_{\left\{\nu_{1} \nu_{2}\right\}}^{\left\{\mu_{1} \mu_{2}\right\}}=K_{\left(\nu_{1}-\nu_{2}, \nu_{2}, \mu_{1}+\mu_{2}-\nu_{1}\right)}^{\left\{\mu_{1} \mu_{1},\right.} \tag{3.6}
\end{equation*}
$$

so that the branching multiplicities for G_{2} restricted to $\mathrm{SU}(3)$ are seen to be nothing other than weight multiplicities of $\operatorname{SU}(3)$. This result was pointed out by Fronsdal (1962), who remarked on the 'strange' nature of this relationship between G_{2} and SU(3).

An illustrative example is given in figure 1 for the case $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ and the results appropriate to the representations $\left\{\mu_{1} \mu_{2}\right\}$ with $0 \leqslant \mu_{1}+\mu_{2} \leqslant 9$ are given in table 1.

Figure 1. The branching multiplicity diagram for $G_{2} \downarrow \mathrm{SU}(3)$ for the representation $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ of G_{2} into irreducible representations $\left\{\nu_{1} \nu_{2}\right\}$ of $\operatorname{SU}(3)$. The numbers in the array are the multiplicities $C_{\left\{\nu_{1} \nu_{2}\right\}}^{\mathrm{fs}}$.

4. The weight multiplicities of $\boldsymbol{G}_{\mathbf{2}}$

The multiplicity $M_{\left(n_{1} n_{2} n_{3}\right)}^{£ \mu_{1} \mu_{2}{ }^{\ddagger}}$) of the weight $\left(n_{1} n_{2} n_{3}\right)$ in the representation $\left.£ \mu_{1} \mu_{2}\right\}$ of G_{2} is defined by the expansion:
G_{2} :

$$
\begin{equation*}
\chi^{\left\{\mu_{1} \mu_{2} \ddagger\right.}=\sum_{\left(n_{1} n_{2} n_{3}\right)} M_{\left(n_{1} n_{2} n_{3}\right)}^{f \mu_{1} \mu_{2} z_{1}^{f} x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}} .} \tag{4.1}
\end{equation*}
$$

Table 1. Branching multiplicities $C_{\left\{\nu_{1} \nu_{2}\right\}}^{\left.f \mu_{1} \mu_{2}\right\}}$ of the representations $\left\{\mu_{1} \mu_{2}\right\}$ of G_{2} into representations $\left\{\nu_{1} \nu_{2}\right\}$ of $\operatorname{SU}(3)$.

Combining (3.2), (3.6) and (2.3) yields the formula:

$$
\begin{equation*}
M_{\left(n_{1} n_{2} n_{3}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}=\sum_{\nu_{1} \geqslant \nu_{2} \geqslant 0} K_{\left(\nu_{1}-\nu_{2}, \nu_{2}, \mu_{1}+\mu_{2}-\nu_{1}\right)}^{\left\{\mu_{1} \mu_{\left(n_{1} n_{2} n_{3}\right)}^{\left[\nu_{1} \nu_{2}\right\}} .\right.} \tag{4.2}
\end{equation*}
$$

The Weyl symmetry manifested by the character formula (3.1) leads to a symmetry of the corresponding weight diagram whereby each weight vector $\left(n_{1} n_{2} n_{3}\right)$ is related by the Weyl group to a dominant weight for which $n_{1}-n_{2}=m_{1} \geqslant n_{2}-n_{3}=m_{2} \geqslant 0$. The multiplicity of such a dominant weight is more conveniently denoted by:

$$
\begin{equation*}
M_{\left(m_{1} m_{2}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}=\sum_{\nu_{1} \geqslant \nu_{2} \geqslant 0} K_{\left(\nu_{1}-\nu_{2}, \nu_{2}, \mu_{1}+\mu_{2}-\nu_{1}\right)}^{\left\{\mu_{1} \mu_{2}\right\}} K_{\left(m_{1}+m_{0}, m_{0}, m_{0}-m_{2}\right)}^{\left\{\nu_{1} \nu_{2}\right\}} \tag{4.3}
\end{equation*}
$$

where $m_{1} \geqslant m_{2} \geqslant 0$ and $3 m_{0}+m_{1}-m_{2}=\nu_{1}+\nu_{2}$, with $m_{0} \geqslant m_{2}$.
The first factor, as has been explained in $\S 3$, defines the hexagonal point set associated with the representation $\left\{\mu_{1} \mu_{2}\right\}$ of $\operatorname{SU}(3)$ in which the points are labelled by oblique coordinates ($\nu_{1} \nu_{2}$). The contribution to e dominant weight ($m_{1} m_{2}$) of the representation $\left\{\nu_{1} \nu_{2}\right\}$ of $\mathrm{SU}(3)$ is then found from the second factor.

This contribution may be evaluated by noting that for the dominant weights $m_{1}+m_{0} \geqslant m_{0} \geqslant m_{0}-m_{2}$ so that by virtue of (2.4)

$$
\begin{equation*}
K_{\left(m_{1}+m_{2}, m_{0} m_{0}-m_{2}\right)}^{\left\{\nu_{1}, \nu_{2}\right\}}=1+\min \left(\nu_{1}-\nu_{2}, \nu_{2}, \nu_{1}-m_{1}-m_{0}, m_{0}-m_{2}\right), \tag{4.4}
\end{equation*}
$$

where the four arguments of $\min (\ldots)$ are the distances of the point $\left(\nu_{1} \nu_{2}\right)$ from the four lines
$\nu_{1}-\nu_{2}=0, \quad \nu_{2}=0, \quad 2 \nu_{1}-\nu_{2}=2 m_{1}+m_{2} \quad$ and $\quad \nu_{1}+\nu_{2}=m_{1}+2 m_{2}$.
The corresponding point set is bounded by these four lines with multiplicity 1 at points on this boundary and increasing indefinitely in steps of 1 along lines parallel to $\nu_{1}=2 \nu_{2}$. This is illustrated for the case $\left(m_{1} m_{2}\right)=(21)$ in figure 2.

Figure 2. The point set defined by $K_{\left(m_{1}+m_{0}, m_{0 . m 0-m 2}\right)}^{\left\{\nu_{1} \nu_{2}\right\}}$ for the case $\left(m_{1} m_{2}\right)=\left(\begin{array}{ll}2 & 1\end{array}\right)$ with $3 m_{0}+1=\nu_{1}+\nu_{2}$.

The multiplicity $M_{\left(m_{1} m_{2}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}$ is then found by superposing the point sets appropriate to the two factors of (4.3) and summing the pairwise products of the contributions from each point. This yields, as shown in figure 3 for the case of the representation $\left.£ \mu_{1} \mu_{2}\right\}=\{52\}$ and the dominant weight $\left(m_{1} m_{2}\right)=(21)$, the multiplicity:

$$
M_{(21)}^{[527}=1.1+1.2+2.1+3.2+1.3+2.1+2.2+1.1=21
$$

Figure 3. The evaluation of $M_{\left(m_{1} m_{2}\right)}^{〔 \mu_{1} \mu_{2} \ddagger}$ in the case $\left.f \mu_{1} \mu_{2}\right\}=\{52\}$ and ($m_{1} m_{2}$) $=(21)$ by the superposition of the weight diagram of $\{52\}$ on the point set $K_{\left(2+m_{0}, m_{0}, m_{0}-1\right)}^{\left\{\nu_{1} \nu_{2}\right\}}$. The result is the sum of the non-vanishing products which are encircled, so that $M_{(21)}^{\mathrm{ts}} 2 \mathrm{f}=21$.

This same procedure may be followed for each point in turn or it may be noted from the structure of the point sets that:
where

$$
\begin{equation*}
R_{\left(m_{1} m_{2}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}=\sum_{\nu_{1} \geqslant 0, \nu_{2} \geqslant 0} K_{\left(\nu_{1}-\nu_{2}, \nu_{2}, \mu_{1}+\mu_{2}-\nu_{1}\right)}^{\left\{\mu_{1} \mu_{2}\right\}} \tag{4.6}
\end{equation*}
$$

with the summation carried out over all points ($\nu_{1} \nu_{2}$) for which

$$
\left(\nu_{1} \nu_{2}\right)= \begin{cases}\left(m_{1}+m_{2}+\alpha+2 \gamma, m_{2}+2 \alpha+\gamma\right) & \text { for } 0 \leqslant \alpha \leqslant m_{1} \\ \left(m_{1}+m_{2}+\beta+2 \gamma, m_{2}-\beta+\gamma\right) & \text { for } 0 \leqslant \beta \leqslant m_{2}\end{cases}
$$

with $\gamma=0,1,2, \ldots$.
Diagramatically this recurrence relation has a simple interpretation whereby the contribution to $R_{\left(m_{1} m_{2}\right)}^{\mathrm{fu}_{1} \mu_{2}{ }^{7}}$ is just the point set defined by the intersection of the weight diagram of $\left\{\mu_{1} \mu_{2}\right\}$ with the lines parallel to $\nu_{1}=2 \nu_{2}$ through the points on that part of the boundary of the point set defined by the second factor of (4.3) specified by $2 \nu_{1}-\nu_{2}=2 m_{1}+m_{2}$ and $\nu_{1}+\nu_{2}=m_{1}+2 m_{2}$. No multiplication is required. This is exemplified in figure 4 in the case $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ and $\left(m_{1} m_{2}\right)=(21)$ and in figure 5 in the case $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ and $\left(m_{1} m_{2}\right)=(10)$.

Since $M_{(32)}^{\mathrm{f} 27}=8$ it follows from these diagrams that $M_{(21)}^{[527}=M_{(32)}^{[527}+13=21$ in agreement with the previous calculation, and $M_{(10)}^{5527}=M_{(21)}^{[52]}+11=32$.

Clearly the application of the recurrence relation (4.5) commencing with points ($m_{1} m_{2}$) at the outer edge of the weight diagram enables the multiplicities of all

Figure 4. The evaluation of $R_{\left(m_{1} m_{2}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}$ in the case $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ and $\left(m_{1} m_{2}\right)=(21)$ through the intersection of the weight diagram of $\{52\}$ and the relevant points of the set $K_{\left(2+m 0, m o, m_{0}-1\right)}^{\left\{\nu_{1} L_{2}\right\}}$. The result is the sum of the encircled numbers, so that $R_{(21)}^{[52\}}=13$.
Table 2. The multiplicities $\boldsymbol{M}_{\left(m_{1} m_{2}\right)}^{\left.f \mu_{1} \mu_{2}\right\}}$ of the dominant weights ($m_{1} m_{2}$) of the representations $\left\{\mu_{1} \mu_{2}\right\}$ of G_{2}.

$\left\{\mu_{1} \mu_{2}\right\}$	00	10	11	20	21	30	22	31	40	32	41	50	33	42	51	60	43	52	61	70	44	53	62	71	80	54	63	72	81	90
00	1																													
10	1	1																												
1 I	2	i	1																											
20	3	2	1	1																										
21	4	4	2	2	1																									
30	5	4	3	2	1	1																								
22	5	3	3	2	1	1	1																							
31	9	8	6	5	3	2	1	1																						
40	8	7	5	5	3	2	1	1	1																					
32	10	10	7	7	5	3	2	2	1	1																				
41	16	14	12	10	7	6	4	3	2	1	1																			
50	12	11	9	8	6	5	3	3	2	1	1	1																		
33	9	7	7	5	4	4	3	2	1	1	1	0	1																	
42	21	19	16	15	11	9	7	6	4	3	2	1	1	1																
51	24	23	19	18	14	11	8	8	6	4	3	2	1	1	1															
60	18	16	14	13	10	9	7	6	5	3	3	2	1	1	1	1														
43	20	20	16	16	13	10	8	8	6	5	3	2	2	2	1	0	1													
52	35	32	29	26	21	19	15	13	10	8	7	4	4	3	2	1	1													
61	36	34	30	28	23	20	16	15	12	9	8	6	4	4	3	2	1	1	1											
70	24	23	20	19	16	14	11	11	9	7	6	5	3	3	3	2	1	1	1	1										
44	16	13	13	11	9	9	8	6	5	4	4	2	3	2	1	1	1	1	0	0	1									
53	39	37	33	31	26	23	19	18	14	12	10	7	7	6	4	2	3	2	1	0	1	1								
62	52	50	44	43	36	31	26	25	21	17	14	11	9	9	7	4	4	3	2	1	1	1	1							
71	51	48	44	41	35	32	27	25	21	17	16	12	10	9	8	6	4	4	3	2	1	1	1	1						
80	33	31	28	27	23	21	18	17	15	12	11	9	7	7	6	5	3	3	3	2	1	1	1	1	1					
54	35	35	30	30	26	22	19	19	16	14	11	9	8	8	6	3	5	3	2	1	2	2	1	0	0	1				
63	64	60	56	52	45	42	36	33	28	24	22	16	16	14	11	8	8	7	4	2	4	3	2	1	0	1	1			
72	75	72	66	63	55	50	43	41	35	30	27	22	19	18	15	11	10	9	7	4	4	4	3	2	1	1	1	1		
81	68	66	60	58	51	46	40	39	34	29	26	22	18	18	16	12	10	9	8	6	4	4	4	3	2	1	1	i	1	
90	43	41	38	36	32	30	26	25	22	19	18	15	13	12	11	9	7	7	6	5	3	3	3	3	2	1	1	1	1	1

Figure 5. The evaluation of $\boldsymbol{R}_{\left(m_{1} m_{2}\right)}^{\left\{\mu_{1} \mu_{2}\right\}}$ in the case $\left\{\mu_{1} \mu_{2}\right\}=\{52\}$ and $\left(m_{1} m_{2}\right)=(10)$ through the intersection of the weight diagram of $\{52\}$ and the relevant points of the set $\boldsymbol{K}_{(1+m 0, m o m o)}^{\left\{\nu_{1} \mathcal{D}_{2}\right\}}$. The result is the sum of the encircled numbers, so that $R_{(10)}^{\mathrm{fs} 2\}}=11$.
dominant weights to be evaluated. The results appropriate to the representation $\left.£ \mu_{1} \mu_{2}\right\}=\{52\}$ are displayed in figure 6 .

Figure 6. The multiplicities $M_{\left(m 1 m_{2}\right)}^{55{ }^{2\}}}$ of the dominant weights ($m_{1} m_{2}$) of the representation $\{52\}$ of G_{2}.

Finally the complete weight diagram may be constructed through the Weyl symmetry operations. For the simpler representation $\left\{\mu_{1} \mu_{2}\right\}=\{31\}$ this is shown in figure 7.

Figure 7. The weight multiplicity diagram for the representation $\left\{\mu_{1} \mu_{2}\right\}=\{31\}$ of G_{2}.

The twelve-fold symmetry is evident whereby the complete diagram may be generated from the dominant weight multiplicities. The results for the multiplicities of the dominant weights of the representations $\left\{\mu_{1} \mu_{2}\right\}$ of G_{2} with $0 \leqslant \mu_{1}+\mu_{2} \leqslant 9$ are given in table 2, extending the tabulation of Springer (1968).

5. Conclusion

It should be stressed that the important aspect of the development presented here is the use of point set diagrams to describe both weight multiplicities and branching multiplicities. This together with the especially simple rules for evaluating the weight multiplicities of $S U(3)$ lead very easily to the derivation of the crucial recurrence relation (4.5) for dominant weight multiplicities. The simple form of this relation obviates the need to cope with the more complex calculations referred to in the introduction.

References

Antoine J P and Speiser D 1964 J. Math. Phys. 5 1560-72
Fronsdal C 1962 Elementary Particle Physics and Field Theory: Brandeis Summer Institute 1962 (New York: Benjamin) pp 427-532
Gruber B 1970 J. Math. Phys. 11 3077-90
Gruber B and Weber H J 1968 Proc. R. Irish Acad. A 66 31-40
King R C and Qubanchi A H A 1978 J. Phys. A: Math. Gen. 11 1-7
McConnell J 1968 Proc. R. Irish Acad. A 66 72-92
Perroud M 1976 J. Math. Phys. 17 1998-2006
Radhakrishnan D and Santhanam T S 1967 J. Math. Phys. 8 2206-9
Sharp R T and Lam C S 1969 J. Math. Phys. 10 2033-8
Springer T A 1968 Invent. Math. 585-105
Sviridov D T, Smirnov Yu F and Tolstoi V N 1973 Sov. Phys.-Dokl. 17 976-8
Wigner E P 1937 Phys. Rev. 51 106-19

